

GTR: DSR Evaluation and Geometry Recommendation

Asphalt Binder Expert Task Group Salt Lake City, UT April 27, 2016

Darin Hunter Anton Paar USA Ashland, VA

www.anton-paar.com

Summary of Situation

Current Status

- GTR modification of asphalt binder provides environmental and performance benefits
- Current Superpave test methods (PG) are not suitable for rubber modified materials with particle sizes up to 2+ mm (mesh 10)
- Acceptance of new materials by highway agencies depends on suitable test methods for rheological characterisation (DSR)

Scope of Work

- Evaluation of various DSR measuring systems
- Investigation of the variability in measured properties

Main Goals

- Identify practical and rheological challenges
- Apply relevant engineering principles such as measuring system standards
- Suggest suitable measuring geometry for PG measurements of GTR modified Asphalt Binder which provides the truest rheological data

Anton Paar

Goals

Summary of Problem and Solution Approaches

Problem

- Swollen 2 mm rubber particles do not fit in the 1 or 2 mm gap if AASHTO T315
- Particle interferences impact results
- Accepted Governing Rules for Good Rheology
 - Measuring gap should be at least 5X and preferably 10X the largest particle size
 - AASHTO T315 / ASTM D7175 (DSR): max. 400 μm particle size (2mm gap, 8mm Ø plate)
- Questionable rheological data

Solution Approaches

- Increase the measuring gap
 - Plate-plate geometry with large gaps (up to 4mm)
 - Concentric cylinder geometry with large gaps
- Considerations:
 - Does gap matter?
 - Does the data agree with conventional measuring gaps?

- Are new sources of mm error introduced?
- Are new practical concerns introduced?

2

mm

Anton Paar

www.anton-paar.com

4

Plate-Plate Geometry: Pros and Cons

Pros

- Less sample volume
- Faster heating/cooling rates and temperature equilibrium
- Accustomed and approved system

Cons

- Reliable trimming and gap filling
 - Larger influence with smaller plates
- Representative sample volume
- Ratio diameter / gap → Geometry factors, Calibration (ISO 6712-10, DIN 53019-1)
- Time effects due to sagging (flow) of binder out of the measuring gap

Concerns

- ? Repeatability
- ? Reproducibility
- ? Reliability

Sample: 10 % 10 mesh GTR in PG64-22

Plate-Plate Geometry: Sample Sag (Flow) Out of Gap

	IG*I [Pa] t = 0 min	IG*I [Pa] t = 30 min	IG*I [Pa] t = 60 min	IG*I [Pa] t = 180 min
	1824	1712	1640	1567
Deviation referred to t = 0 min [%]		- 6.1	- 10.1	- 14.1

- Flow of sample out of gap produces increasingly lower measured results over time even within time scale of 10 min thermal equilibrium
- Parallel plate system should be used with maximum gap size of 2 mm

Remaining Rubber Matrix after 180 min Measurement (binder pooled on lower plate)

Plate-Plate Geometry: Repeatability

- Single, expert level user
- Issues contributing to lack of repeatability
 - Issues with; homogeneity, representative sample and trimming
 - Sample pulled out of gap and/or rubber particles at edge cannot be trimmed thus hang outside gap introducing additional drag
- New source of error introduced due to sampling and trimming issues

Plate-Plate Geometry: Reliable (Real) Measured Data

Concentric Cylinder Geometry: Pros and Cons

Pros

- Large gaps possible
- Sample cannot flow out of the shear gap
 - No binder sag errors
- No trimming required
- Representative sample volume
- No edge effects
- Disposable cups can be used

Cons

- Increased sample volume
 - Slower heating and cooling rates
 - Longer temperature equilibrium time (at least 30 min)
- Relative measuring geometry requires calibration with traceable standard (Cannon N2700000SP)

Concentric Cylinder Geometry: Overview

Concentric Cylinder Geometries with Large Gap: Engineering Details

Concentric cylinder (CC) geometries with large gap (ratio $\delta_{cc} >> 1.0847$)

B-CC17SP:

$$\delta_{\rm cc} = \frac{R_{\rm e}}{R_{\rm i}} = \frac{14.46 \text{ mm}}{8.33 \text{ mm}} = 1.74$$
 (Gap: ~ 6.2 mm)

B-CC10SP:

 $\delta_{\rm cc} = \frac{R_e}{R_i} = \frac{14.46 \, mm}{5.00 \, mm} = 2.89$ (Gap: \approx 9.5 mm)

- The combination of smaller cylinders (bobs) in a CC27 cup results in relative concentric cylinder systems (non ISO 3219 compliant) due to ratio δcc >> 1.0847
- Compromise to be able to measure GTR modified asphalt binder
- Geometry constants must be calibrated
- Defined as relative measuring systems (same as PP with gap size > 2 mm is)
- Nevertheless, provides data comparable to absolute systems

Calibration of B-CC17SP

Measuring profile used to calibrate and validate the geometry factors:

Verification result after calibration:

→ No need to perform again at customer site!

→ Please Note: This calibration does not fit for low viscosity samples!

- 1 1/s in rotation was used to be within the newtonian range
- 12 % and 10 rad/s were used according to AAHSTO T315
 - Shear viscosity and complex viscosity values are perfectly within ± 1 % of the viscosity value according to the calibration certificate of the used Cannon N2700000SP

Viscosity Sta	andard: N270	Lot Number: Expiry Date:	
Certification	/Issue Date: 06		
Temperature		Kinematic Viscosity	Dynamic Viscosity
°C	°F	mm²/s (cSt)	mPa•s (cP)
52.00	125.60		600400
58.00	136.40		395800
64.00	147.20		266700
70.00	158.00		183000
76.00	168.80		127800

Concentric Cylinder Geometry: Reliabe (Real) Data

CC compared with data from the accepted plate-plate, 1mm gap, 25mm dia

- Once thermal equilibrium is achieved, curve shapes are equal
- No significant difference in visco-elastic behavior (phase angle δ values)
- Relative CC system with large gap is comparable to absolute PP system (1 mm gap)

Concentric Cylinder Geometry: Proof of Concept Unaged Binder

Influence of GTR mesh size on complex shear modulus G* (neat asphalt binder)

- Increasing G* values with increasing particle size
- Only slightly difference between 40/80 mesh and 30 mesh
- Overall stiffness (G*) is influenced by different rubber particles

Concentric Cylinder Geometry: Proof of Concept PAV Aged Binder

Influence of rubber modification on complex shear modulus G* and phase angle δ

- Increasing stiffness (G*) with addition of GTR
- Shift to more solid-like behavior with addition of GTR
- Dramatic loss of damping ability (flow or liquid-like behavior) at intermediate temperature (delta going towards 0° or solid behavior)

Summary and Conclusions

- Plate-plate geometry has intrinsic limits:
 - Questionable rheological data due to sample sag
 - Difficult to trim crosslinked rubber particles
 - Appropriate for smaller particle sizes (<< 2mm)
 - Okay for intermediate temperares where sample sag is not an issue
- Concentric cylinder geometries with large gap provide:
 - Eliminination of fundamental plate-plate limitations
 - Calibration procedure as for relative measuring systems
 - Easy, straight forward compensation for torsional compliance; thicker bob axis greatly reduces need for compliance compensation
 - Performance Grading measurements at both high and intermediate temperatures are within reach
- Compromises must be made, i.e. use of relative systems
- Final steps collaboration partners currently working on repeatability with CC10 bob for PAV aged binder
- Practical considerations need to be addressed such as longer time to equilibrium, reproducible cup filling, etc...

Final Steps

Inton Paar

Plate Plate

Concentric Cylinder

Some Impressions

